MATH 579 Exam 5 Solutions

1. Calculate the number of compositions of 14 into an even number of even parts.

Partitions of 14 into even parts are bijective with partitions of 7 into integer parts, by dividing each part by 2 . We don't want all such though, we insist on an even number of parts, namely 2 or 4 or 6 . Applying Cor. 5.3 thrice, the answer is $\binom{6}{1}+\binom{6}{3}+\binom{6}{5}=6+20+6=32$.
2. For all $n \in \mathbb{N}$, determine $S(n, n-2)$.

There are two types of set partitions of $[n]$ into $n-2$ parts. First, there is the type that has one triple and $n-3$ singletons. There are $\binom{n}{3}$ such. Second, there is the type that has two doubles and $n-4$ singletons. If the doubles were different, there would be $\binom{n}{2}\binom{n-2}{2}$ such; however, they are not, so in fact there are $\frac{1}{2!}\binom{n}{2}\binom{n-2}{2}$ such. Putting it together, we get $\binom{n}{3}+\frac{1}{2!}\binom{n}{2}\binom{n-2}{2}$. Note that this works even for $n=1,2$, where everything is 0 .
3. Calculate $S(8,3)$.

Using the helpful but not necessary formula $S(n, 2)=2^{n-1}-1$, together with Thm 5.8 , we get $S(3,3)=1, S(4,3)=S(3,2)+3 S(3,3)=\left(2^{2}-1\right)+3=6, S(5,3)=S(4,2)+3 S(4,3)=$ $\left(2^{3}-1\right)+3(6)=25, S(6,3)=S(5,2)+3 S(5,3)=\left(2^{4}-1\right)+3(25)=90, S(7,3)=S(6,2)+$ $3 S(6,3)=\left(2^{5}-1\right)+3(90)=301, S(8,3)=S(7,2)+3 S(7,3)=\left(2^{6}-1\right)+3(301)=966$ 。
4. Let a_{n} denote the number of compositions of n where each part is larger than 1 . Find a formula relating a_{n}, a_{n-1}, a_{n-2}.

We divide such compositions into two types: A : those that have first term equal to $2, \mathrm{~B}$: those that have first term greater than 2. Type A are bijective with compositions counted by a_{n-2}, as seen by removing that first term. Type B are bijective with compositions counted by a_{n-1}, as seen by subtracting one from the first term. Hence $a_{n}=a_{n-1}+a_{n-2}$. Note that $a_{2}=1, a_{3}=1$, so in fact these are the Fibonacci numbers in disguise.
5. For all $l, m, n \in \mathbb{N}_{0}$, prove that $\sum_{k}\binom{n}{k} S(k, l) S(n-k, m)=S(n, l+m)\binom{l+m}{l}$.

We count partitions of $[n]$ into l nonempty "red" parts, and m nonempty "blue" parts. One way to do this is to first partition $[n]$ into $l+m$ nonempty parts, and then paint l of them red (the rest are blue). The RHS counts this way. Another way is to first choose k elements that will be in a red part; we then partition them into nonempty parts in $S(k, l)$ ways. The remaining $n-k$ elements will be in a blue part; we partition them in $S(n-k, m)$ ways. The LHS counts this approach.
6. For every prime p, prove that $B(p) \equiv 2(\bmod p)$. Equivalently, prove that p divides $B(p)-2$.

Consider the function f on partitions of $[p]$ that acts by permuting the numbers within the parts as $1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots \rightarrow p \rightarrow 1$. For example, for $p=3, f$ acts as $\{1,2\}\{3\} \rightarrow$ $\{2,3\}\{1\} \rightarrow\{1,3\}\{2\} \rightarrow\{1,2\}\{3\}$. Call two partitions 'equivalent' if some number of applications of f will map one onto the other. f leaves exactly two partitions alone: $\{1\}\{2\} \cdots\{p\}$ and $\{1,2, \ldots, p\}$. All other partitions are equivalent to exactly p partitions [special case of Lagrange's theorem]; hence $B(p)$ is two plus some multiple of p.

Note 1: Since the cycle of partitions that f induces all have the same number of parts, this also proves that $p \mid S(p, k)$, for p prime and $1<k<p$.
Note 2: p must be prime for this to hold. For example, for $p=4$, the cycle $\{1,2\}\{3,4\} \rightarrow$ $\{2,3\}\{1,4\} \rightarrow\{1,2\}\{3,4\}$ only has two partitions, not p. And indeed $B(4)=15$, which is not congruent to 2 modulo 4 .
Note 3: This result is a special case of Touchard's Congruence: $B_{n}+B_{n+1} \equiv B_{n+p}(\bmod p)$. This problem corresponds to $n=0$; the general result can be proved in a similar way.

Exam results: High score $=88$, Median score $=70$, Low score $=53$ (before any extra credit)

